

High-Resolution Computed Tomography (HRCT) chest scans to examine the association between regional drug deposition of LIQ861 (YUTREPIA[™]) and vasodilation in PH-ILD population.

BEN R LAVON¹ · JAN DE BACKER¹ · SAVAN PATEL² · VANI RAVICHANDRAN² · GARETH GWYN² · RAJEEV SAGGAR²

¹FLUIDDA, NV, Kontich, Belgium. ²Liquidia Technologies, North Carolina, United States.

INTRODUCTION

- Pulmonary hypertension (PH) is a frequent complication of interstitial lung disease (ILD) and is associated with substantially increased morbidity and mortality.
- PH associated with ILD (PH-ILD) arises due to a combination of vascular remodeling and rarefaction and chronic vasoconstriction¹.
- Misclassification of interstitial markings as vessels on CT is common in ILD patients⁶.
- Inhaled treprostinil is the only approved therapy indicated for treatment of PH-ILD. YUTREPIA is an investigational dry powder inhaled (DPI) formulation of treprostinil.

OBJECTIVES

- To evaluate the use of dry powder treprostinil in PH-ILD.
- To assess the localized and dose-dependent vasodilatory effects of YUTREPIA on the pulmonary vasculature and other lung structures using qCT and computational fluid dynamics.

- Quantitative CT (qCT) analysis of the pulmonary vasculature in PH-ILD has shown utility as a prognostic tool, and as a marker of therapy response to PH-specific therapies²⁻⁵.
- YUTREPIA is formulated using Liquidia's proprietary PRINT[™] technology which ensures particles of uniform size and shape to enhance distal lung drug deposition.
- To minimize the misclassification of fibrosis as vasculature and to improve the accuracy and interpretability of qCT via a reduced-contrast-dose CT pulmonary angiogram protocol and respiratory gating.

METHODS

STUDY The ASCENT study is an open-label, multicenter, prospective study that will enroll approximately 60 subjects with PH-ILD **OVERVIEW** to be treated with YUTREPIA for up to 52 weeks.

CT Protocol

Participants will receive inspiratory/expiratory, thin-slice, volumetric chest CT with lowdose intravenous contrast at baseline prior to initial dosing and at Week 24 following dosing. Hand-held spirometry equipment will be used to monitor breathing signal.

Quantitative CT Analysis

Functional Respiratory Imaging™ (FRI) will be used to quantify pulmonary vascular volume distribution, extent of fibrosis, and airway and lobar volumes:

- **BV5%TBV**: Fraction of pulmonary blood in vessels <5 mm²
- **BV10%TBV**: Fraction of pulmonary blood in vessels >10 mm²
- **siVfib**: Quantitative extent of fibrosis
- iVlobe: Imaging-based lung volume
- **iVaw**: Volume of airways >2 mm in diameter

HRCT Methodology Overview

FRI Analysis

Blinded visual read by thoracic radiologist

- Assessment of ILD pattern
- Semiquantitative fibrosis scoring

In-silico deposition analysis

- Computational fluid dynamics will be used to model deposition of YUTREPIA⁷
- Uses measured aerosol characteristics and patient-specific airway measurements, extracted via qCT analysis
- No radio label is used
- Used to assess: 1) adequate delivery of YUTREPIA to the distal lung and 2) quantify the spatial relationship between exposure (deposition) and response (vasodilation)

FIGURE 3: Representative FRI Workflow and Output

A. Reconstructed vascular tree of a subject with PH. Red represents BV5-sized vessels and blue represents BV10-sized vessels. B. Detected fibrotic regions in a subject's lungs. C. An example segmented airway tree. D. Heatmap of modeled particle deposition.

CONCLUSIONS

ASCENT is the first study to use quantitative CT imaging to examine the association between regional drug deposition of YUTREPIA[™] and its potential effects in a PH-ILD population.

The use of intravenous contrast will improve the accuracy of vascular analysis by improving the detection of the pulmonary vasculature.

References:

1. Girgis RE, et al. J Heart Lung Transplant. 2021;40(9):872-881. 2. Zisman, et al. Poster presented at: The European Respiratory Society

5. Alkhanfar D, et al. ERJ Open Res. 2022;8(2):00503-2021. 6. Jacob J, et al. Eur Respir J. 2017;49(1):1601011.

Disclosures:

B. R. Lavon: Employee of Fluidda, NV J. De Backer: Founder and CEO of Fluidda, NV

V. Ravichandran: Employee and shareholder of Liquidia Corporation **G. Gwyn:** Employee and shareholder of Liquidia Corporation

4. Rahaghi FN, et al Chest. 2021;160(6):2220-2231.

7. De Backer JW, et al. Radiology. 2010;257(3):854-862.

